生物リズムと力学系

書籍情報
シリーズ名シリーズ・現象を解明する数学 全10巻 
ISBN978-4-320-11000-7
判型A5
ページ数192ページ
発行年月2011年09月
本体価格2,800円
生物リズムと力学系 書影
生物リズムと力学系

生物リズムの現象について,モデリングと数理モデルの力学系理論による数学的解析方法を入門レベルから解説した国内で初めてのテキストで,数学者と物理学者のコラボによるユニークな入門書である。
 対象となるリズム現象は,蛍の集団の明滅の同期現象,生体のサーカディアンリズムなどの生物分野のみならず,化学反応,メトロノームの振動など幅広く,それらに共通した数理的メカニズムを,非線形振動子モデルや位相方程式を用いて平易に解説しており,このような現象とその数学的取扱いに興味をもっている学部学生や大学院生の格好のテキストである。
 また,力学系理論の観点から,ホップ分岐やリミットサイクルの安定性などに関する数学的理論を,抽象的な議論より,応用を念頭にていねいに紹介している。縮約系の位相方程式の数学的基礎づけも解説しており,微分方程式における力学系の概念や手法を学ぶ入門書としても利用できる。
 生命科学分野を含む数学の応用分野の学生や研究者にも,数理モデルとその解析手法の数少ない入門書となる。

目次

第1章 様々なリズムと同期
1.1 生命のリズム現象
1.2 リズムの基本性質
1.3 リズムの数学的記述方法
1.4 リミットサイクルの例
1.5 リミットサイクル振動子の位相応答曲線
1.6 同期現象
1.7 補足

第2章 力学系の初歩とリミットサイクル
2.1 力学系の考え方
2.2 周期解とリミットサイクル
2.3 リミットサイクルの分岐
2.4 常微分方程式の基礎的な定理
2.5 補足

第3章 位相方程式による同期現象の解析
3.1 縮約とは?
3.2 位相方程式の導出
3.3 平均化近似
3.4 位相縮約の解析的な計算:スチュアート・ランダウ振動子の例
3.5 位相方程式の解法と同期現象
3.6 数値的な位相縮約
3.7 補足

第4章 位相ダイナミクスの力学系理論
4.1 周期軌道の周りの運動と位相ダイナミクス
4.2 位相と平均化法の理論付け
4.3 補足

付録A 周期外力を受ける振動子のm :n 同期の解析
A.1 平均化近似の拡張
A.2 位相方程式による同期解析
A.3 周期外力を受けるフィッツフュー・南雲振動子

付録B 位相方程式の拡張
B.1 一般的な摂動に対する位相感受関数
B.2 結合の時間遅れ

付録C 位相感受関数の数値的・実験的計測方法
C.1 位相感受関数の数値計算における注意点
C.2 位相感受関数と位相結合関数の実験系における計測

付録D 不変多様体の理論の結合振動子系への応用

参考文献