• ニュースメール
  • アフターサービス
  • 教科書献本のご案内
  • facebook
  • 構造計画研究所

代数的組合せ論入門

書籍情報
シリーズ名共立叢書 現代数学の潮流 
ISBN978-4-320-11147-9
判型A5 
ページ数526ページ
発行年月2016年07月
本体価格5,800円
代数的組合せ論入門 書影
代数的組合せ論入門

 代数的組合せ論とは,「群無しの群論」と標語的に述べられもするが,「組合せ論的対象の表現論の方向からの研究」,具体的には有限置換群の研究の発展として組合せ論として研究が進められてきた分野であり,また,アソシエーションスキームの枠組みの中でグラフ,デザイン,コードなどを統一的に見る方向でも研究が進められてきた分野である。本書は,代数的組合せ論の理論およびその様々な拡張などをとりあげて解説した入門書かつ専門書である。
 最初に,組合せ論の基本を予備知識なしで概観する。次にグラフ,デザイン,コードなどを統一的に見る概念として重要な,アソシエーションスキームの概念を解説し,その後,アソシエーションスキームの上でのコードおよびデザイン理論(Delsarte理論)の解説とその応用について解説する。また同時に,Terwilliger代数というアソシエーションスキームの研究を深める概念の導入も述べる。その次には,球面上の代数的組合せ論とDelsarte理論の類似を解説し,代数的組合せ論がどのようなことを目標に,またどのように研究されてきた(またされていく)かを解説する。最後に,Terwilliger代数の基本を述べ,それがアソシエーションスキームの研究にどのように役立っているかを,研究の最前線を概観できる形で詳しく解説する。
 特に本書の後半部の内容はオリジナルであり,最新の結果,情報,方法,未解決問題なども数多く含んでいるので,本分野の専門家にとって大変有用なものであろう。また,初心者や非専門家にとっても,本分野全体の概観や,最前線で活躍してきた著者らだからこそ書ける発展の歴史が述べられており,代数的組合せ論の良い道しるべになるであろう。

目次

第1章 古典的デザイン理論と古典的符号理論
1. グラフ理論入門
2. 強正則グラフとMooreグラフ
3. 古典的t-デザイン,定義と基本的な性質
4. デザインの具体例
5. 古典的符号理論入門
6. 符号の具体例と存在問題

第2章 アソシエーションスキーム
1. アソシエーションスキームの定義
2. ボーズ・メスナー代数
3. 可換なアソシエーションスキーム
4. アソシエーションスキームの指標表
5. 交叉数行列とボーズ・メスナー代数
6. 双対ボーズ・メスナー代数とTerwilliger代数
7. アソシエーションスキームに関する色々な概念
8. 距離正則グラフとP-多項式アソシエーションスキーム
9. Q-多項式アソシエーションスキーム
10. 色々なアソシエーションスキームの指標表
11. 球面への埋め込み

第3章 アソシエーションスキーム上の符号とデザイン(アソシエーションスキーム上のDelsarte理論)
1. 線形計画法を考える
2. アソシエーションスキームの部分集合
3. 古典的なデザインとジョンソンスキーム上のデザイン
4. ハミングスキーム上の符号
5. ジョンソンスキームにおけるtightなデザイン
6. ジョンソンスキームやハミングスキームにおける奇数tのtightなt-デザイン

第4章 アソシエーションスキーム上の符号とデザイン(続き)
1. Assmus-Mattsonの定理とその拡張(Delsarteの相対デザインを用いる方法)
2. 正則な半束におけるt-デザイン

第5章 球面上の代数的組合せ論と代数的組合せ論についての総論
1. 球面上の有限集合
2. 他の空間上の有限集合の研究

第6章 P-かつQ-多項式スキーム
1. P-多項式/Q-多項式スキーム再訪
2. TD-対(tridiagonal pair)
3. L-対(Leonard pair)
4. 既知のP-かつQ-多項式スキーム