一般化線形モデルは,各種の統計的方法を,回帰を拡張した統一的な枠組みのもとで扱うもので,線形重回帰,分散分析,ロジスティック回帰,対数線形モデル(分割表の分析),ポアソン回帰,ガンマ回帰などを含む。現在,さまざまな分野で広く使われ,多くの統計ソフトウェアが対応している。本書では,フリーソフトウェアであるRを利用して,一般化線形モデルの基本的な使用法を最尤法による検定や推定などを含めて解説するとともに,一般化線形モデルを実際の場面で使用する際に遭遇することの多い混合モデルやパラメトリック・ブートストラップ,擬似尤度などの手法を解説している。簡単な例題をRを用いて実際に解析しながら読んでいくことにより,尤度と最尤法の基本的な考え方を身につけることができる。また,多くの統計ソフトウェアでは対応されていない特徴をもつデータや仮説に対して,一般化線形モデルを拡張して対応する方法も解説している。