ペレルマンがサーストンの幾何化予想を解決してからすでに10年が経ち,その手法はすでに幾何学の基礎になりつつある。本書ではその手法を最小限の知識を前提として解説することを試みた。
直接解決に用いられたリッチフローの解析について述べるだけでなく,予備知識がない読者でも幾何化予想の内容を無理なく理解できるよう最初にページを割いて3次元多様体論,とくに幾何構造と標準分解について述べた。リッチフローに関しては最大値原理やコンパクト性定理など基本定理について初歩から論じ,これらの準備のもとにペレルマンの主要なアイデアを解説していく。また原論文を読もうとする意欲ある読者の指針となるように,最後に予想の解決の技術的な議論を概観した。